Sound Absorbing Materials
All materials have some sound absorbing properties. Incident sound energy which is not absorbed must be reflected, transmitted or dissipated. A material's sound absorbing properties can be described as a sound absorption coefficient in a particular frequency range. The coefficient can be viewed as a percentage of sound being absorbed, where 1.00 is complete absorption (100%) and 0.01 is minimal (1%).
Incident sound striking a room surface yields sound energy comprising reflected sound, absorbed sound and transmitted sound. Most good sound reflectors prevent sound transmission by forming a solid, impervious barrier. Conversely, most good sound absorbers readily transmit sound. Sound reflectors tend to be impervious and massive, while sound absorbers are generally porous, lightweight material. It is for this reason that sound transmitted between rooms is little affected by adding sound absorption to the wall surface.
There are three basic categories of sound absorbers: porous materials commonly formed of matted or spun fibers; panel (membrane) absorbers having an impervious surface mounted over an airspace; and resonators created by holes or slots connected to an enclosed volume of trapped air. The absorptivity of each type of sound absorber is dramatically (in some cases) influenced by the mounting method employed.
- Porous absorbers: Common porous absorbers include carpet, draperies, spray-applied cellulose, aerated plaster, fibrous mineral wool and glass fiber, open-cell foam, and felted or cast porous ceiling tile. Generally, all of these materials allow air to flow into a cellular structure where sound energy is converted to heat. Porous absorbers are the most commonly used sound absorbing materials. Thickness plays an important role in sound absorption by porous materials. Fabric applied directly to a hard, massive substrate such as plaster or gypsum board does not make an efficient sound absorber due to the very thin layer of fiber. Thicker materials generally provide more bass sound absorption or damping.
- Panel Absorbers: Typically, panel absorbers are non-rigid, non-porous materials which are placed over an airspace that vibrates in a flexural mode in response to sound pressure exerted by adjacent air molecules. Common panel (membrane) absorbers include thin wood paneling over framing, lightweight impervious ceilings and floors, glazing and other large surfaces capable of resonating in response to sound. Panel absorbers are usually most efficient at absorbing low frequencies. This fact has been learned repeatedly on orchestra platforms where thin wood paneling traps most of the bass sound, robbing the room of "warmth."
- Resonators: Resonators typically act to absorb sound in a narrow frequency range. Resonators include some perforated materials and materials that have openings (holes and slots). The classic example of a resonator is the Helmholtz resonator, which has the shape of a bottle. The resonant frequency is governed by the size of the opening, the length of the neck and the volume of air trapped in the chamber. Typically, perforated materials only absorb the mid-frequency range unless special care is taken in designing the facing to be as acoustically transparent as possible. Slots usually have a similar acoustic response. Long narrow slots can be used to absorb low frequencies. For this reason, long narrow air distribution slots in rooms for acoustic music production should be viewed with suspicion since the slots may absorb valuable low-frequency energy.
Is room acoustics an art or a science? Recent technology has refined the acoustician's ability to predict a room's acoustical requirements. It is now possible, for example, to provide active acoustical enhancement by introducing synthesized sound reflections through an array of loudspeakers, thus improving the quality of the transmitted sound dramatically. More specific design criteria are also evolving to suit different uses. Acknowledging the uniqueness of the design criteria required for each space is vital to the success of the facility, especially if it is multipurpose.
Art implies intuition and mastery. Science can aid in the development of both. But what role does luck play? Were the grand masters simply lucky? Is it luck or skill that allows an artist to appeal to a broad audience? It is in fact a combination of both. Today's room acoustics, like many arts, is an opinion-dominated field, one that is influenced as much by history as it is by technology.